Combining isothermal titration calorimetry, fluorescence anisotropy and kinetic approaches to decipher the molecular mechanisms of the redox activation of the Yap1 transcription factor in *S. cerevisiae*

UMR 7365 IMOPA
Structural and Molecular
Enzymology
Nancy, France

Antoine Bersweiler Alexandre Kriznik Hortense Mazon LSOC CEA Saclay France

Dr B. D'Autréaux Dr A. Delaunay-Moisan Dr G. Belli Dr M. Toledano

H₂O₂ as a signaling molecule

Cellular messenger

Toxic

Normal physiological conditions

Enzymes/transcription factors activation

Oxidative stress

Stress proteins Chaperones Alteration of biomolecular function

H₂O₂ as a signaling molecule: issues

- Concentration tightly regulated by cellular antioxidant systems
 → low in vivo concentrations
- Specificity

Molecular mechanisms that generate specificity in the transmission of oxidative stress signals or redox signals?

Yap1: redox activation of transcription factor by thiol peroxidase

Yap1: redox activation of transcription factor by thiol peroxidase

Yap1: the redox relay 1st step of activation pathway

Oxidative activation of Yap1 is sequential

Based on D'Autréaux et Toledano, Nature Reviews, 2007

Yap1: Specificity?

Based on D'Autréaux et Toledano, Nature Reviews, 2007

Functional coupling between Orp1 and Yap1?

Based on D'Autréaux et Toledano, Nature Reviews, 2007

Yap1: Specificity?

Functional coupling between Orp1 and Yap1?

Direct recognition Orp1/Yap1? Role of Ybp1?

598

Mechanism of Ybp1 action? Protein-protein interactions

Molecular recognition between the redox relay partners?

Fluorescence anisotropy

fluorescent probe: Alexa Fluor (AF) 488 5-SDP Ester

Mechanism of Ybp1 action? Protein-protein interactions

Molecular recognition between the redox relay partners?

Mechanism of Ybp1 action? Protein-protein interactions

Molecular recognition between the redox relay partners?

Yap1-Ybp1 1-1

Native mass spectrometry

Ybp1 recruits Orp1 and Yap1 into a ternary complex

ITC titration of Yap1, Ybp1 and Yap1-Ybp1 by Orp1

Orp1 and Yap1 do not interact

Ybp1 and Orp1 form a 1-1 complex

 $K_{D} = 0.8 \mu M$

Orp1 interacts with Ybp1-Yap1

Two hypotheses

Orp1 interacts with Ybp1-Yap1

Two hypotheses

Ybp1 recruits Orp1 and Yap1 into a ternary complex

Rate of the first step of Yap1 activation pathway

Role of ternary complex in Yap1 oxidation mechanism?

Reconstitution of first step of activation pathway in vitro

Ybp1 accelerates the reaction Orp1-SOH + Yap1

Ybp1 accelerates the reaction Orp1-SOH + Yap1

Role of ternary complex in Yap1 oxidation mechanism?

In vivo Orp1 concentration = 0,5 μ M Experiments @ 50 μ M

- → k_{Yap} = Cste suggests that the reaction occurs within the ternary complex
- → Simulation of k_{Yap} = f(Orp1) based on K_D of 0,7 μM
- → In the absence of Ybp1 the reaction is bimolecular
- → Real effect of complex formation
- = 600 fold

Intramolecular disulfide formation in Orp1 is very fast

Does Ybp1+Yap1 inhibit

k_{ss} decreased from 500 to 6 s⁻¹

- → Reduced competition with Yap1
- → Reaction between Orp1 and Yap1 is possible

The disulfide form of Orp1 doesn't interact with Ybp1 and Yap1-Ybp1

The disulfide form of Orp1 doesn't interact with Ybp1 and Yap1-Ybp1

Yap1 activation mechanism

Ybp1 recruits Orp1 (ITC)

Yap1 activation mechanism

Ybp1 recruits Orp1 (ITC) Orp1 disulfide formation is decreased within the ternary complex

Ybp1

598 SH

Yap1 activation mechanism

Ybp1 recruits Orp1 (ITC) Orp1 disulfide formation is decreased within the ternary complex

Ybp1

Yap1

598 SH

Yap1 activation mechanism Ybp1 598 SH Ybp1 recruits Orp1 (ITC) Yap1 **SH** 303 Orp1 disulfide formation is decreased within the ternary complex 598 Yap1 SH Orp1 Ybp1 Trx SH Yap1 **SH** 303 36 **S** 36 ____ 598 H_2O_2 Orp1 Orp1 Yap1 HS SH H₂O SOH 36 Orp1 **k**_{SS} **K**Yap1 Ybp1 598 SH Yap1 SH 303

Bersweiler et al., in preparation

Cellular signaling pathways

Thank you for your attention

In vitro reconstitution of the redox relay

Recombinant purified proteins

Conclusion: requirement of both Orp1 and Ybp1 in efficient and sensitive Yap1 oxidation by H₂O₂

Direct/indirect sensing of the H₂O₂ signal

Table 1. Binding and thermodynamic parameters of Orp1 binding to Ybp1 and the Yap1^{SSS SSS}·Ybp1 complex deduced from ITC titrations^a

	Dissociation constant (μΜ)	Stoichiometry	Δ H cal mol $^{ extstyle -1}$	-T∆S cal mol ⁻¹
Ybp1	0.8 ± 0.1	0.8 ± 0.1	- 4890 ± 400	- 3430
Yap1 ^{SSS SSS} ·Ybp1	0.7 ± 0.2	0.8 ± 0.1	- 4210 ± 240	- 4235

^a Parameters deduced from the analysis of binding isotherms shown Fig. 3C

Intramolecular disulfide formation in Orp1 is very fast

Ybp is required for the reaction WT Orp1-SOH + Yap1

Ybp1 required in vivo for the first step of Yap1 activation

Mechanism of Ybp1 action?