

Arbre-Mobieu Warsaw 2018 plenary meeting

INTRINSIC PROTEIN DISORDER COULD BE OVERLOOKED IN COCRYSTALLIZATION CONDITIONS: AN SRCD CASE STUDY

<u>Béla GYURCSIK</u>¹, Eszter NÉMETH¹, Ria K. BALOGH¹, Katalin BORSOS¹, Anikó CZENE¹, Peter W. THULSTRUP²

¹University of Szeged, Department of Inorganic and Analytical Chemistry, H-6720 Szeged, Hungary;

²Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark

The concept of the new artificial nuclease design

Protein design by means of computational techniques using the crystal structures of NCoIE7/DNA and ZF/DNA as starting structures

Gyurcsik et al. J Comput Aided Mol Des., 2014, 28, 841-850.

The effect of W464 on the solution structure of NCoIE7

Circular dichroism spectroscopy

CDPro: 16% α -helix 22% β -sheet, 21% turn, 41% of unordered sequence BeStSel: 11% α -helix 20% β -sheet, 18% turn, 51% of unordered sequence

Gyurcsik et al., J. Inorg. Biohem., 151, 143-149 (2015)

The effect of the Im7 protein on the solution structure and Zn(II) binding

Circular dichroism spectroscopy

Isothermal Titration Microcalorimetry Zn(II) binding

	K _{d (Prot+lm7)}	K _{d (Prot)}
NCoIE7	61 ± 18 nM	9.6 ± 3.2 nM
TKW	33 ± 23 nM	- 11 ± 1 μM
W	55 ± 25 nM	- 5.6 ± 0.3 μM
lm7	ND	

Inducible preorganized metal ion binding site

Effect of the interacting partners and metal ion on the structure of the NCoIE7 protein

- Im7 or DNA induced the protein folding of the NCoIE7 nuclease mutants.
- 32 crystal structures of NColE7/9 or mutants, but only 4 without interacting partners
- Investigate the enzyme structures in solution in the absence of their inhibitors or substrate analogue compounds, which may cause structural changes of the enzyme.

CD spectra of the Zinc-Finger (ZF) protein with and without Zn(II)

Effect of the DNA on Zn(II) binding of the ZF protein

Buffers and intearcting partners may influence the metal ion binding and the structure of the proteins

- The minor metal ion contamination of buffers may cause significant changes in metal ion binding properties and thus, function of proteins.
- DNA may stabilize a protein fold and metal ion binding either kinetically or thermodynamically.
- Investigate the protein structures in solution in the absence of their interacting partners.

Acknowledgement

This work was financially supported by the research grants

NKFIH K_16/120130 and

GINOP 2.3.2-15-2016-00038.

PROJECT FINANCED FROM THE NRDI FUND

