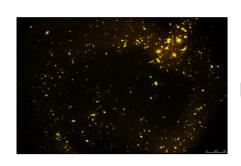


STSM: Characterization of the binding affinity of anti-Streptococcus uberis antibodies

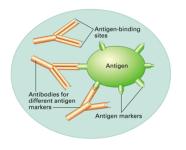

Kairi Kivirand

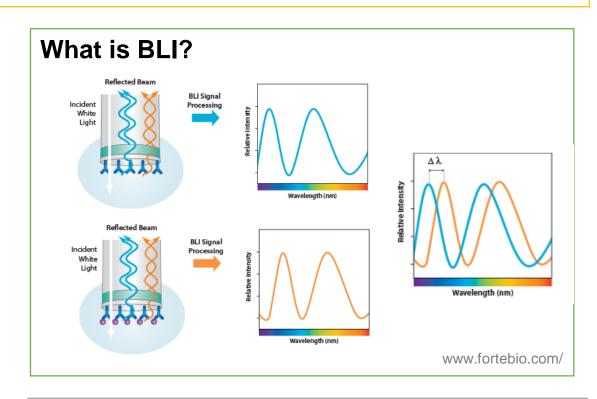
Institute of Chemistry, University of Tartu, Estonia Department of Electronics, Tallinn University of Technology, Estonia

Previous work

Design and production of antibodies for the detection of Streptococcus uberis¹

- Streptococcus uberis (S. uberis) is an important environmental pathogen causing mastitis in dairy cattle.
- Combining in silico bioinformatic analysis and solid phase peptide synthesis using Fmoc chemistry, a peptide was synthesized to mimic the adhesion protein of *S. uberis*, which is promoting the attachment of bacteria to epithelial cells.
- After purification with RP-HPLC, the peptides were conjugated with a larger carrier protein (KLH) and used for immunization of rabbits to produce specific antibodies.
- The separation of anti-S. uberis antibodies from rabbit blood antisera was carried out with affinity chromatography, using the synthetic peptides as affinity ligands.
- The purified antibodies showed high specificity (using ELISA and immunofluorescence assay (Fig.1)) towards *S. Uberis.*

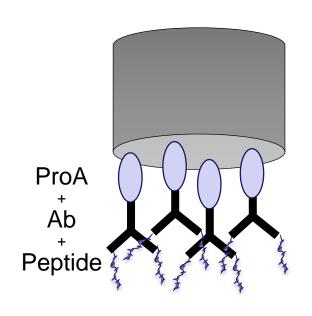

Figure 1. Immunofluorescence analysis of binding the purified *anti-S. uberis* antibodies labelled with DyLight®550 to *S. uberis* cells.


1. Mihklepp,K., Kivirand,K., Nikopensius,M., Peedel,D., Utt,M., and Rinken,T., Design and production of antibodies for the detection of *Streptococcus uberis*. *Enzyme and Microbial Technology* 2017. 96: 135-142.

STSM host institution: Prof. S. Ricard-Blum and Prof. A. Miele, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, University Lyon 1, France

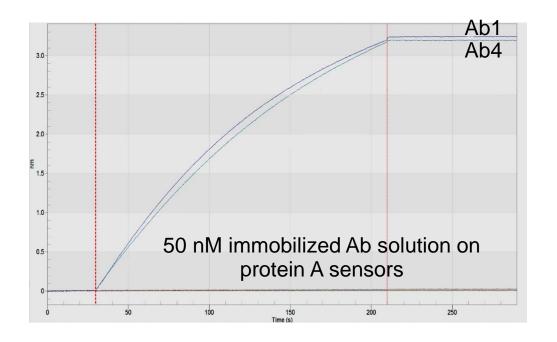
AIM of the STSM

- To learn the Bio-layer interferometry (BLI) technique
- Characterize the binding affinity of original anti-Streptococcus uberis antibodies



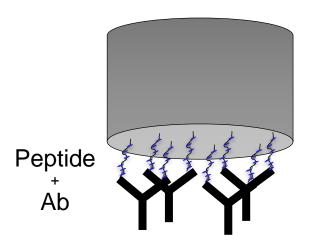
Materials

Four batches of antibodies Synthetic peptide¹: C(Npys)SAPVYLGVSTE


1. Mihklepp,K., Kivirand,K., Nikopensius,M., Peedel,D., Utt,M., and Rinken,T., Design and production of antibodies for the detection of *Streptococcus uberis*. *Enzyme and Microbial Technology* 2017. 96: 135-142.

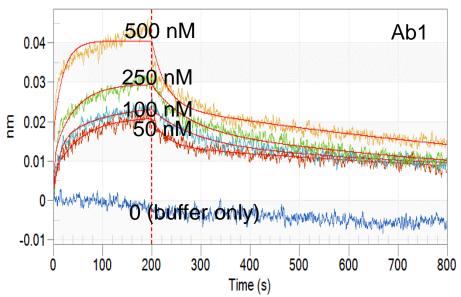
ProA biosensor

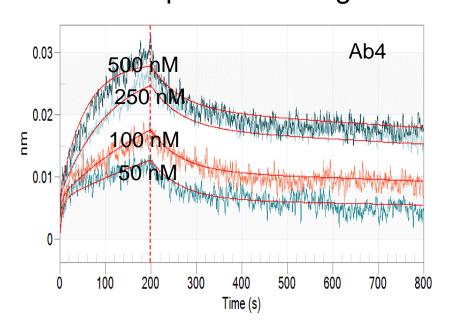
All of the antibody batches bound to protein A


Ab concentration from 15 nM to 500 nM

No change in signal (no displacement) in case the peptide was attached to the immobilized Ab

Peptide concentration from 100 nM to 1 mM


AR2G biosensor



Peptide immobilized via its N-terminus

Results:

- Ab1 → specific binding
- Ab2 → no binding
- Ab3 → non-specific binding
- Ab4 → specific binding

Ab1 and Ab4 usable for bio-detection of S. Uberis bacteria

Sincere gratitude

Prof. **S. Ricard-Blum**, Prof. **A. Miele** and the people from the ASPE laboratory from ICBMS (UMR 5246) University Lyon 1, France

T. Rinken, K. Mihklepp from Biosensor laboratory at the University of Tartu

Prof. **M. Min** from research laboratory for Communicative Electronics at the Tallinn University of Technology

The financial support from the **COST ARBRE-MOBIEU** (COST-STSM-CA15126), **Estonian Science Foundation** and Centres of Excellence - **EXCITE** (Excellence in IT in Estonia)

Thank you for listening