ROLE OF INTRINSIC DISORDER IN THE PROTEIN NETWORK FOR ACTIVATION OF NICKEL-DEPENDENT UREASE

Barbara Zambelli Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology University of Bologna

barbara.zambelli@unibo.it

Structure and active site

Urease as a virulence factor

 Helicobacter pylori infects ca. 50% of the world population and is the main cause of cancer in gastrointestinal tract (class I carcinogen by WHO)

 Mycobacterium tubercolosis causes 2 million deaths per year

 Yersinia pestis causes pneumonic, septicemic and bubonic plagues

• Cryptococcus neoformans causes meningitis and related brain damage

Zambelli B., Musiani, F., Benini S., Ciurli S. - Acc. Chem. Res. 2011

Zambelli B., Musiani, F., Benini S., Ciurli S. - Acc. Chem. Res. 2011

Zambelli B., Musiani, F., Benini S., Ciurli S. - Acc. Chem. Res. 2011

UreG proteins are all intrinsically disordered

Protein rigidity

132 10.5 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5

¹H Chemical Shift

M. saedula UreG G. max UreG H. pylori UreG Thermophilic Archea Plant Mesophile Bacterium 112 126 128

H Chemical Shift (ppm

Zambelli et al. - J. Biol. Chem. 2005 Zambelli et al. - Biochemistry 2006 Zambelli et al. - Proteins 2005 Guerra et al. - Plant J. 2012

Miralula et al - J. Biol. Inorg. Chem. 2014

UreG quaternary structure

Size exclusion chromatography + light scattering of SpUreG

UreG exists in concentration-dependent monomer-dimer equilibrium

Some isolated UreG proteins are active

Functional studies: GTP hydrolysis

SpUreG: $k_{cat} = 0.04 \text{ min}^{-1}$

*Mt*UreG: k_{cat}= 0.01 min⁻¹

MsUreG: k_{cat} = 0.02 min⁻¹

GmUreG: k_{cat}= 0.01 min⁻¹

KaUreG: no activity

HpUreG: no activity

MjUreG: no activity

Some isolated UreG proteins are active

Functional studies: GTP hydrolysis

SpUreG: $k_{cat} = 0.04 \text{ min}^{-1}$

*Mt*UreG: k_{cat}= 0.01 min⁻¹

MsUreG: k_{cat} = 0.02 min⁻¹

GmUreG: k_{cat} = 0.01 min⁻¹

KaUreG: no activity

HpUreG: no activity

MjUreG: no activity

EcHypB: k_{cat}= 0.17 min⁻¹

HpHypB: k_{cat}= 0.36 min⁻¹

*Bj*HypB: k_{cat}= 0.18 min⁻¹

Understanding the conformational and functional landscape sampled by UreG as a function of temperature, denaturants and additives provides insight into the structural organization and stability of UreG in solution

Site-directed spin labelled EPR

shape.

Site-directed spin labelled EPR on UreG

Site-directed spin labelled EPR on UreG

M. Palombo, S. Ciurli, V. Uversky, E. Mileo, B. Zambelli et al. Scientific Reports, 2017

Site-directed spin labelled EPR on UreG

M. Palombo, S. Ciurli, V. Uversky, E. Mileo, B. Zambelli et al. Scientific Reports, 2017

Dependence of UreG dynamics by denaturants and temperature

330 332 334 336 330 340 342 D [mT]

Dependence of UreG dynamics by denaturants and temperature

Wavelength (nm)

Dependence of UreG dynamics by denaturants and temperature

Temperature and denaturants decrease UreG rigidity and secondary structure

Dependence of UreG dynamics by folding inducers

Dependence of UreG dynamics by folding inducers

Trimethylamine N-oxide (TMAO) increases UreG rigidity and secondary structure

Dependence of UreG dynamics by folding inducers SDSL-EPR

Sharp component: $\tau c = 0.44$ ns TFE component: $\tau c = 0.73$ ns

Broad component: $\tau c = 5.5$ ns

Circular dichroism

Dependence of UreG dynamics by folding inducers

SDSL-EPR

Sharp component: $\tau c = 0.44$ ns TFE component: $\tau c = 0.73$ ns

Broad component: $\tau c = 5.5 \text{ ns}$

Circular dichroism

Trifluoroethanol (TFE) changes the "sharp" component, while increasing secondary structure

M. Palombo , S. Ciurli , V. Uversky , E. Mileo, B. Zambelli et al. Scientific Reports, 2017

Dependence of UreG dynamics by folding inducers SDSL-EPR

Sharp component: $\tau c = 0.44 \text{ ns}$ SDS component: $\tau c = 1.7 \text{ ns}$

Dependence of UreG dynamics by folding inducers

SDSL-EPR

Sharp component: $\tau c = 0.44 \text{ ns}$ SDS component: $\tau c = 1.7 \text{ ns}$

Broad component: $\tau c = 5.5 \text{ ns}$

Circular dichroism

SDS changes the "broad" component, while increasing secondary structure

M. Palombo , S. Ciurli , V. Uversky , E. Mileo, B. Zambelli et al. *Scientific Reports*, **2017**

The relationship between folding and activity of UreG

The relationship between folding and activity of UreG

M. Palombo , S. Ciurli , V. Uversky , E. Mileo, B. Zambelli et al. Scientific Reports, 2017

The relationship between folding and activity of UreG

M. Palombo , S. Ciurli , V. Uversky , E. Mileo, B. Zambelli et al. *Scientific Reports*, **2017**

Conclusions

- UreG exists in solution as a conformational ensemble of different interconverting folding states.
- The degree of folding of the different conformers depends on temperature and additive concentration
- The enzymatic activity does not correlate to the protein rigid behaviour
- Intrinsic disorder likely allows the enzyme to interact with different partners that regulate its enzymatic activity

UreG interacts with multiple partners and ligands

Molecular Dynamics simulations

Molecular Dynamics simulations

UreG shows substantial rigidity of the protein regions involved in catalysis, while it tends to unfold in regions involved in protein interactions necessary for the formation of multiprotein complexes.

UreG shows substantial rigidity of the protein regions involved in catalysis, while it tends to unfold in regions involved in protein interactions necessary for the formation of multiprotein complexes.

UreG shows substantial rigidity of the protein regions involved in catalysis, while it tends to unfold in regions involved in protein interactions necessary for the formation of multiprotein complexes.

Sampling different regions of UreG with EPR

Site directed mutagenesis + SDSL-EPR

Sampling different regions of UreG with EPR

Site directed mutagenesis + SDSL-EPR

B [mT]

Sampling different regions of UreG with EPR

Site directed mutagenesis + SDSL-EPR

What is the conformational and functional landscape sampled by UreG in cellular environment?

What is the conformational and functional landscape sampled by UreG in cellular environment?

Cellular crowding, aspecific interactions, intracellular viscosity, interaction with partnes....: what is the effect on protein structure-dynamics-function?

Delivery of labelled proteins inside the cell

In cell SDSL-EPR

Delivery of labelled proteins inside the cell

In cell SDSL-EPR

Electroporation of labeled protein

mutated ure-operon

construct grown LB medium with urea, Ni and cresol red.

E. coli transformed with ureOP construct grown LB medium with urea, Ni and cresol red.

Acknowledgments

My group @UniBO

Stefano Ciurli Francesco Musiani Luca Mazzei, Post-doc Valquiria Broll, Post-doc Marta Palombo, PhD student Annalisa Pierro Ylenia Beniamino

Collaborators

Alberto Danielli, UniBO

CNRS Marseille

Elisa Mileo Valérie Belle

CIRMMP@ Center for magnetic resonance (Florence)

Abre-Mobieu cost action