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INTRODUCTION

Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that
allows highly sensitive structural detection of low concentration analytes and is applicable for studies of

model systems on roughened electrodes [1]. The active area of our SERS substrates is formed using an
ultra-short pulse laser on a soda-lime glass substrate. The resulting surface structure features stochastic
nanopattern, which meets good resonance characteristics for various excitation wavelengths and
adsorbed analyte molecules. The tethered lipid bilayers (tBLMs) (Fig. 1) are considered as perspective
experimental platforms for membrane biosensors and may be suitable for a broad spectrum of
biophysical experiments such as peptide/membrane interactions, protein/ membrane interactions, lipid
phase transitions and others. Attached to a SERS active surface, tBLMs may allow monitoring of
biologically relevant events with Raman spectroscopy. It is known that structure of the self-assembled
monolayers (SAMs) used to anchor phospholipid bilayers to surfaces affects the functional properties of

the tethered bilayer membranes (tBLMs) [2].

The aims of this study are to test new surface enhanced Raman scattering (SERS) substrates coated with A
silver to determine their suitability to analyse self-assembled monolayer (SAM) of anchor molecules for —

tBLM formation on roughed surface.
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Figure 1. Schematic representation of tethered bilayer lipid membrane (tBLM) on a
silver surface.

MIXED SAMs

Two types of anchor molecules were chosen to form SAMs on nanostructured silver
surface - long strand thiolipid Wilma’s compound (WC14) and three different short
strand backfillers 2-mercaptoethanol (2-ME), 3-mercapto-1-propanol (3-M-1-P) and 4-
mercapto-1-butanol (4-M-1-P) (Fig. 2).

2-mercaptoethanol (ME) 3-mercapto-1-propanol (3-M-1-P) 4-mercapto-1-butanol (4-M-1-B)

20-tetradecyloxy-3,6,9,12,15,18,22-heptaoxahexatricontane-1-thiol, C14 (myristoyl) (WC14)

We received a good quality SERS spectra of anchor molecules adsorbed on
nanostructured silver surface (Fig. 3). Vibrational peaks assignment showed in a table 1

below.

O

Hsf\/o%io

Figure 2. Structure of anchor molecules.
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Since WC14 molecules by themselves form too tight SAM to achieve a functional tBLM, it
is very important to carefully choose short strand backfiller molecules that determines a

softer SAM for biologically relevant tBLM.

Mixed SAMs on the roughened Ag surface was formed from ethanolic solutions
containing 50% long strand anchor WC14 and 50% different short strand backfiller: 2-ME,

3-M-1P°, 4-M-1B.
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Figure 4. SERS spectrum of mixed SAMs
formed on nanostructured Ag surface.

Figure 4 shows SERS spectra obtained from mixed SAMs. Beyond other assigned
vibrational peaks, bands at 1129 cm™ assigned specifically to C-C and C-O-C bonds
symmetric stretching of WC14 molecule (Table 2) proves, that heterogeneous SAMs were

formed.

Further analysis of SERS spectra revealed, that by choosing backfiller molecules of
different length we can regulate the arrangement of long chain anchor molecules on the
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Abbreviations: n.a. - not applicable; v - stretching; vas - asymmetric stretching; vs - symmetric
stretching; 6 - deformation; t - twist; w - waging; r - rock; T - trans; G - gauche.

Table 2. Vibrational assignments for SERS
peaks of mixed SAMs.
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Figure 3. SERS spectrum of anchor molecules Table 1. Vibrational assignments for anchor cm. The longer chain of the backfiller molecule leads to easier transition of WC14 from
adsorbed on nanostructured Ag surface. molecules. gauche to trans conformation (Fig. 6, B and C).
tBLM FORMATION
SAM containing WC14 molecules and 4-M-1-B as a backfiller was chosen for tBLM formation by multilamellar lipid vesicle fusion. The analysis of SERS spectra obtained after tBLM
formation indicates the new band at 886 cm' assigned to CH, vibrational mode of WC14 in trans conformation (Fig. 5). This means that WC14 changes its orientation after vesicle
& 3 8 &
fusion by straightening the hydrophilic part of the molecule and withdrawing the hydrophobic part from the surface (Fig. 6, D).
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Figure 5. Comparison of mixed WC14/4-M-1-B Table 3. Vibrational assignments for SERS Figure 6. Orientation of a long strand anchor molecules (WC14) on the Ag
SAM SERS spectrum before and after tBLM bands of mixed SAM before and after vesicle surface: (A) 100% WC14; (B) WC14 diluted with 2-ME; (C) WC14 diluted with 4-
formation. fusion. M-1-P; (D) Orientation of WC14 molecules after phospholipid vesicle fusion.
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